Coupled-mode theory for photonic band-gap inhibition of spatial instabilities.
نویسندگان
چکیده
We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals. We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical expressions for the new (higher) modulational thresholds and the size of the "band gap" as a function of the system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above threshold. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there is bistability between two spatially shifted patterns. In large systems stable wall defects between the two solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably compared with results obtained from the full system equations. Inhibition of pattern formation can be used to spatially control signal generation in the transverse plane.
منابع مشابه
Photonic band-gap inhibition of modulational instabilities.
Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the instability via the creation of a photonic band gap. A novel mechanism of light localization due to defects and pattern inhibition is also described.
متن کاملTunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry
In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...
متن کاملCoupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers.
We demonstrate the dynamics of stimulated Raman scattering in designed high-Q/V(m) silicon photonic band gap nanocavities through the coupled-mode theory framework towards optically-pumped silicon lasing. The interplay of other chi((3)) effects such as two-photon absorption and optical Kerr, related free-carrier dynamics, thermal effects, as well as linear losses such as cavity radiation and li...
متن کاملSpontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal
Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...
متن کاملInvestigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation
In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2005